
SUSPENDED AIR HANDLING UNITS

> with counter-flow heat exchanger (hex)

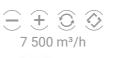
FLOOR MOUNTED AIR HANDLING UNITS

> with rotary heat exchanger or hex counter-flow heat exchanger

attenuator

VENTUS COMPACT SUSPENDED AIR HANDLING UNITS

VENTUS Compact TOP with hex counter-flow heat exchanger



ENERGY SAVING

0,5L

MULTIFUNCTIONAL CONTROLS

max. 490 mm

ENERGY SAVING

INTEGRATED

HEX COUNTER-FLOW HEAT RECOVERY

EC MOTORS

AND SILENT FANS WITH

4

MINERAL WOOL

INSULATION

MINERAL WOOL HIGHLY EFFICIENT ROTARY INSULATION AND HEX COUNTER-FLOW HEAT EXCHANGER > VENTUS Compact

VENTUS Compact with rotary heat exchanger or hex counter-flow heat exchanger

AND SILENT FANS WITH EC MOTORS

PLUG&PLAY PRODUCT

INTEGRATED MULTIFUNCTIONAL CONTROLS

> Standard Air Handling Units

VENTUS COMPACT SUSPENDED AIR HANDLING UNITS

CASING

» Panels filled with mineral wool, enclosed with steel sheet on both sides.

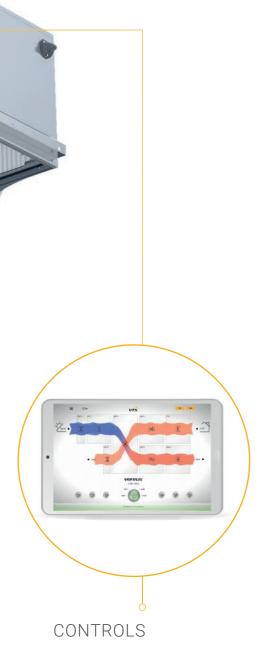
EUROVENT CERTIFIED PERFORMANCE

» Casing parameters according to EN 1886: T2, TB3, L1, D1, F9.

up to 93% drive efficiency

EC MOTORS

» Efficient, silent and low vibrations fan with electronically commutated motor in a IE4 class.


ENERGY RECOVERY

- » Highly efficient counterflow hex recovery with by-pass.
- » Recovery efficiency reaching 90%.

RECUPERATOR BY-PASS

- » Stepless adjustment of heat recovery capacity.
- » Passive cooling function.
- » Recuperator frost protection.

MINI-PLEAT FILTERS Air filters with extended high efficiency filtration surface. » Supply - EU7 (ePM2,5 65%) » Exhaust - EU5 (ePM10 50%)

 Multifunctional controls, integrated with the unit – fully pre-configured and ready to run.

VENTUS COMPACT TOP FLOOR-MOUNTED UNITS WITH VERTICAL DUCT CONNECTION

CASING

- » Panels filled with mineral wool, enclosed with steel sheet on both sides.
- » Casing parameters according to EN 1886: T2, TB3, L1, D1, F9.
- » Fan and filter section panels fitted with hinges.

DIMENSIONS

- » Unit width 88 cm can be transported through the opening of 90 cm without disassembling the device.
- CONTROLS
- » Multifunctional controls, integrated with the unit – fully pre-configured and ready to run.

- » Supply EU7
- » Exhaust EU5

ENERGY RECOVERY

- » Highly efficient counterflow hex recovery with by-pass.
- » Recovery efficiency reaching 90%.

MINI-PLEAT OR BAG FILTERS

Air filters with extended high efficiency filtration surface.

motor in a IE4 class.

VENTUS COMPACT FLOOR MOUNTED AIR HANDLING UNITS

CASING

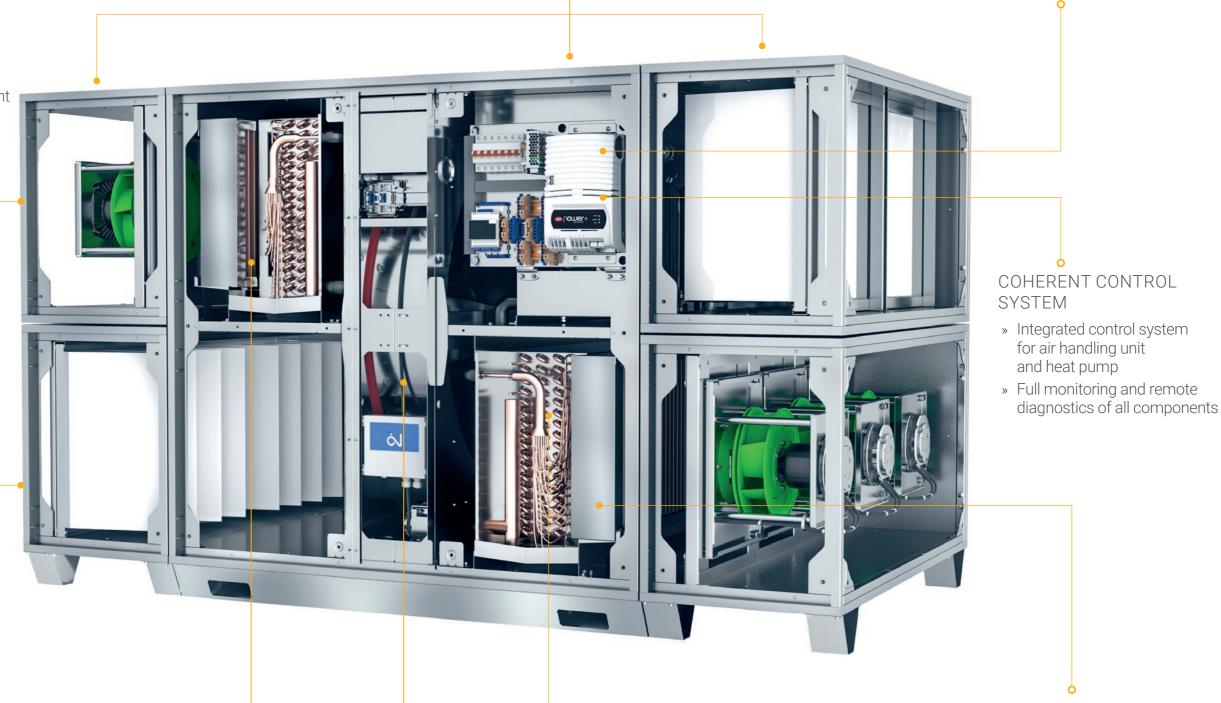
- » Panels filled with mineral wool, enclosed with steel sheet on both sides.
- » Casing parameters according to EN 1886: T2, TB3, L1, D1, F9.

MINI-PLEAT FILTERS

Air filters with extended high efficiency filtration surface. » Supply - EU7 (ePM2,5 65%) » Exhaust - EU5 (ePM10 50%)

VENTUS COMPACT FLOOR MOUNTED UNITS WITH HEAT PUMP

CONVENIENT TRANSPORT, QUICK INSTALLATION


» The unit is divided into easy to transport and easy to assemble complete functional modules

FOR USE IN ANY FACILITY

- » No external refrigeration equipment taking up space in your facility
- » No external noise sources

OPTIMUM MATCHING

- » Factory fit of heat pump and air handling unit components
- » Manufacturer's warranty on the final air handling unit and heat pump product

HIGH ENERGY EFFICIENCY

- » High efficiency sorption rotary regenerator for excellent heat and moisture recovery
- » Installation of multi-row condensers and evaporators $^{\circ}$ on both sides of the regenerator ensures the most efficient operation of the heat pump

EASY COMMISSIONING

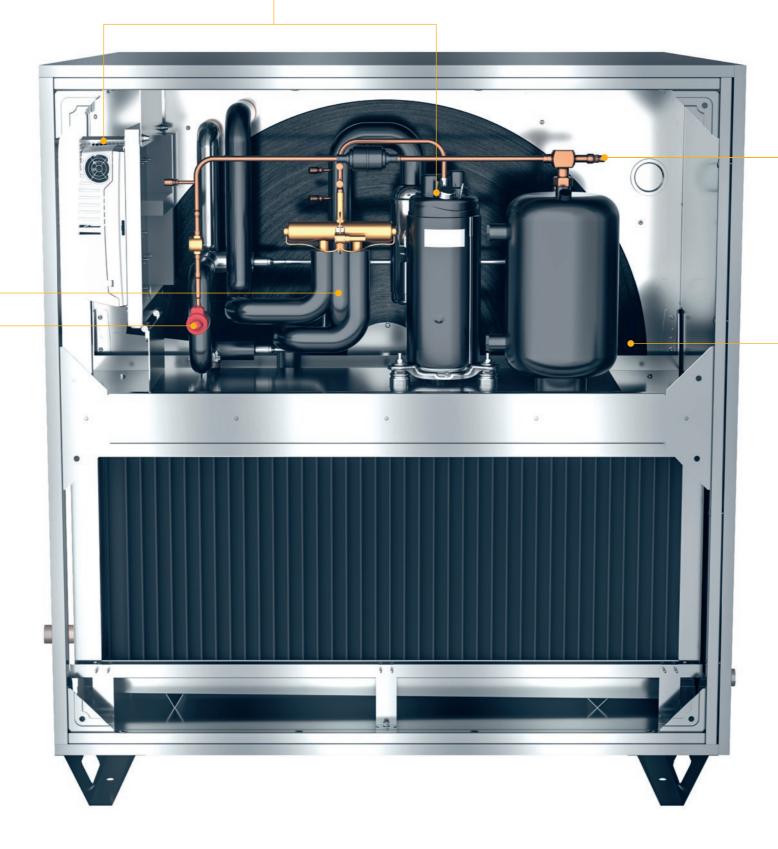
- » Multifunctional factory assembled controls ready to work as soon as the unit is assembled
- » Easy commissioning without service

HEAT PUMP FUNCTIONS

» Supply air cooling in summer » Reduction of supply air heating costs during other periods of the year

VENTUS COMPACT FLOOR MOUNTED UNITS WITH HEAT PUMP

• SMOOTH REGULATION OF HEATING AND COOLING POWER


- » Inverter compressor with DC motor smoothly adjusts cooling and heating power
- » Controller equipped with sensors fully controls cooling parameters of the heat pump system

HEATING AND COOLING FUNCTION

- » Four-way valve automatically switches reverse operation modes
- » Automatic defrosting function in winter

» Electronic expansion valve dynamically adjusts fluid flow to current air handling unit parameters

cooling and heating power g parameters of the heat pump system

• MULTI-STAGE HEAT PUMP

- » Ongoing monitoring of the production process
- » Individual leakage and operational check confirmed by electronic report
- » UDT (Office of Technical Inspection) certificate

SMOOTH REGULATION OF HEAT RECOVERY POWER

- » Electronically controlled stepper motor of the rotary heat exchanger smoothly regulates heat recovery capacity
- In winter time the automation system ensures three-stage frost protection for the rotary heat exchanger

VENTUS COMPACT SUSPENDED AIR HANDLING UNITS

Base unit overall data

Unit size	Nominal airflow	Airflow range	Height	Width	Duct connection heigth	Duct connection width
	[m ³ /h]	[m ³ /h]	[mm]	[mm]	[mm]	[mm]
VVS005s	500	150 - 650	400	790	318	335
VVS010s	1000	300 - 1100	400	1150	318	515
VVS015s	1500	450 - 1650	400	1550	318	715
VVS020s	2000	600 - 2200	490	1610	408	743
VVS030s	3000	900 - 3300	490	2160	408	1018

Section length

Unit size		F	Н	С	HC
	Base unit		Additional a	ir treatment functions	
	[mm]	[mm]	[mm]	[mm]	[mm]
VVS005s	1230	200	200 - 460	370 - 460	460 - 920
VVS010s	1500	200	200 - 460	370 - 460	460 - 920
VVS015s	1500	200	200 - 460	370 - 460	460 - 920
VVS020s	1828	200	200 - 460	370 - 460	460 - 920
VVS030s	1828	200	200 - 460	370 - 460	460 - 920

Duct accessories

Dimmension WxH [mm]	VVS005s	VVS010s	VVS015s	VVS020s	VVS030s
Flexible connection	305x288	485x288	685x288	730x375	1005x375
Air damper	305x288	485x288	685x288	730x375	1005x375
Rectangle spigot	330x310/300x300	510x310/400x350	710x310/400x350	740x400/500x400	1015x400/800x400
Rounded spigot	330x310/355	510x310/355	710x310/355	740x400/450	1015x400/450

VENTUS COMPACT FLOOR MOUNTED AIR HANDLING UNITS

Base unit overall data

Unit size	Nominal airflow	Airflow range	Height	Width	Duct connection heigth	Duct connection width
	[m ³ /h]	[m ³ /h]	[mm]	[mm]	[mm]	[mm]
VVS021c	2100	840 - 2310	991	967	345	860
VVS030c	3000	900 - 3300	1255	967	480	860
VVS040c	4000	1200 - 4400	1255	1174	480	1065
VVS055c	5500	1650 - 6050	1525	1345	615	1235
VVS075c	7500	2250 - 8250	1765	1486	735	1380
VVS100c	10000	3000 - 11000	1965	1666	835	1560
VVS120c	12000	3600 - 13200	2039	1897	870	1790
VVS150c	15000	4500 - 16500	2241	2091	970	1985

Height includes 90 mm base rail

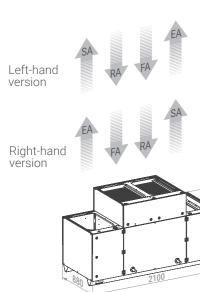
Base unit lengths

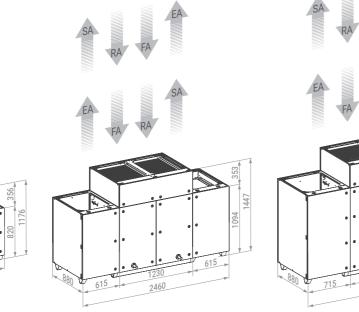
Unit size	(b) (c) (c) (c)			3 3 3 3 8 B	3/ 8 8 0	3 8 8 8 8
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
VVS021c	1240	1080	1080	2 230	2 230	2 500
VVS030c	1240	1080	1080	2 230	2 230	2 500
VVS040c	1240	1080	1080	2 230	2 230	2 500
VVS055c	1240	1080	1080	2 290	2 290	2 560
VVS075c	1240	1080	1080	2 530	2 530	2 800
VVS100c	1300	1300	1080	2 570	2 570	2 800
VVS120c	1300	1300	1080	2 670	2 670	2 900
VVS150c	1300	1300	1080	2 730	2 730	2 940

Additional section length

Unit size	F	Н
0	[mm]	[mm]
VVS021c	310	310 - 710
VVS030c	310	310 - 710
VVS040c	310	310 - 710
VVS055c	310	310 - 630
VVS075c	310	310 - 630
VVS100c	310	310 - 630
VVS120c	310	310 - 630
VVS150c	310	310 - 630

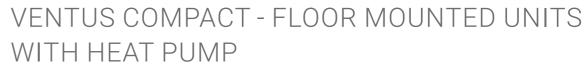
С	HC	S
[mm]	[mm]	[mm]
370 - 710	710	1080
370 - 710	710	1080
370 - 710	710	1080
450 - 790	790	1080
450 - 790	790	1080
890	890	1080
890	890	1080
920	920	1080


VENTUS COMPACT TOP - FLOOR-MOUNTED UNITS WITH VERTICAL DUCT CONNECTION


Base unit overall data

Unit size	Nominal airflow	Airflow range	Height	Width	Duct connection
	[m ³ /h]	[m ³ /h]	[mm]	[mm]	[mm]
VVS023c	2100	1250-2100	1176	880	700x445
VVS033c	3000	1800-3000	1447	880	700x513
VVS043c	4000	2400-4000	1737	880	700x613

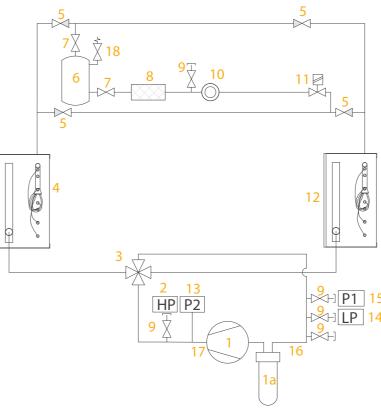
Base unit lengths


Unit size		
	[mm]	[mm]
VVS023c	2100	2100
VVS033c	2460	2460
VVS043c	2860	2860

FA - fresh air intake SA - fresh air supply to the room

- RA return air intake from the room
- EA exhaust air ejection from the room

Base unit overall data


Unit size	Nominal airflow	Airflow range	Height	Width	Duct connection heigth	Duct connection width
	[m ³ /h]	[m ³ /h]	[mm]	[mm]	[mm]	[mm]
VVS021c	2100	1200-2100	991	967	345	860
VVS030c	3000	1500-3000	1255	967	480	860
VVS040c	4000	2000-4000	1255	1174	480	1065
VVS055c	5000	2500-5500	1525	1345	615	1235

* - the range of the heat pump function depends on the outdoor air parameters

Base unit lengths

Unit size		
	[mm]	[mm]
VVS021c	2660	2400
VVS030c	2660	2400
VVS040c	2660	2660
VVS055c	2820	2820

Heat pump refrigeration system

0	

Refrigeration components

- Compressor 1
- Liquid separator 1a
- 2 High pressure switch
- 4-way valve 3
- Evaporator/Condenser 4
- Check valve 5
- 6 Liquid medium tank
- 7 Shut-off valve (Rotalock)
- 8 Filter drier
- 9 Service valve
- 10 Sight glass
- Electronic expansion valve 11
- 12 Evaporator/Condenser
- 13 High-pressure transducer
- 14 Low-pressure transducer
- 15 Low-pressure switch
- 16 Suction temperature sensor
- Discharge temperature sensor 17
- 18 Safety valve


VMS – VENTUS MANAGEMENT SYSTEM

VTS supplies control system with a factory-implemented application for remote monitoring and management of the operating parameters of the units in real time via a web browser on any mobile device.

VENTUS MANAGEMENT SYSTEM:

- » Displaying visualisations on any devices from PC to mobile devices
- » Monitoring and management of the majority of devices from the open visualisation of a single unit
- » Easy and intuitive change of the operating mode of the unit using a central button
- » Tools for supporting easy and quick setup of the optimal operating schedule of the unit

Graphical operation calendar:

» Changing time intervals using sliders

Charts of unit's operation:

- » Two charts main and secondary
- Free selection of the set of parameters for monitoring and assigning them to selected ranges

NUM NUM NUM NUM VICE NO NUM NUM VICE NUM NUM NUM V		=	0=		VTS			
NY NY NY	ALAIM							
REVERSE LALEE	CTVE AL	-						
bit bit bit bit 1 100.00 40.00 Ann-Althouts "Supported that the induce 2 200.00 10.00 Ann-Althouts "Supported that the induce 2 200.00 10.00 Ann-Althouts "Supported that the induce 2 200.00 10.00 Ann-Althouts "Supported that the induce 3 200.00 10.00 Ann-Althouts "Supported that the induce 4 200.00 10.00 Ann-Althouts "Supported that the induce 5 200.00 10.00 Ann-Althouts "Supported that the induce 6 200.00 10.00 Ann-Althouts "Supported that the induce 7 200.00 10.00 Ann-Althouts "Supported that the induce 8 200.00 10.00 Ann-Althouts "Supported that the induce 9 10.00 10.00 Ann-Althouts "Supported that the induce 9 10.00 10.00 Ann-Althouts "Supported that the induce 9 10.00 10.00 10.00 10.00 9 10.00 10.00 10.00 10.00 10 10.00 10.00 10.00 10.00 10 10.00 10.00 10.00 10.00	NO -	8478	-	NAME				
1 202.00 102.00 Ann- Antona- Supported for time main 2 202.00 102.00 Ann- Antona- Supported for time main 2 202.00 102.00 Ann- Antona- Supported for time main 2 202.00 102.00 Ann- Antona- Supported field time main 3 202.00 102.00 Ann- Antona- Supported field time 4 202.00 102.00 Ann- Antona- Supported field time 5 202.00 102.00 Ann- Antona- Supported field time 6 202.00 102.00 Ann- Antona- Supported field time 7 202.00 102.00 Anno-Antona-Supported field time 8 202.00 102.00 Anno-Antona-Supported field time 9 202.00 102.00 Anno-Antona-Supported field time 9 202.00 102.00 Inc. Antona-Supported field time 9 202.00 202.00 Inc. Antona-Supported field time 9 202.00 202.00 202.00 Inc. Antona-Supported field time	IS TORICA	ALARMS -						
1 200.60 10,01 Anno-No Supported from The Internation 1 200.60 10,02 Anno-No Supported from The Internation 2 200.60 10,02 Anno-No Supported from The Internation Class 3 200.60 10,02 Anno-No Supported from Internation 4 200.60 10,02 Anno-No Supported from Internation 5 200.60 10,02 Anno-No Supported from International Internation 6 200.60 10,02 Anno-No Supported from International Internation 6 200.60 10,02 Anno-No Supported from International Internation 6 200.60 10,02 Anno-No Supported from International Internation 7 200.70 200	- 04	0478	7646	NAME				
1 200400 10.51.0 Auto-Pre 4 200400 10.52. Auto-Pre-Transcript Dataf 5 200400 10.52. Auto-Pre-Transcript Dataf 6 200400 10.52. Auto-Pre-Transcript Dataf 7 200400 10.52. Auto-Pre-Transcript Dataf 8 200400 10.52. Auto-Pre-Transcript Dataf 9 200400 10.52. Auto-Pre-Transcript Dataf 10 200400 10.52. Event Use	•	2020-06-10	1423-04	Agen - Arithmate - Temperator	re Back Water Healter			
4 205407 1912 Amm-Price-Trapender Schedl 8 205407 1912 Amm-Price-Trapender Schedl 9 205407 1912 Amm-Price-Trapender Schedl 9 205407 1912 Amm-Price-Trapender Schedl EPTITIES Colspan="3">Colspan="3">Colspan="3">Colspan="3" Colspan="3">Colspan="3" Colspan="3" Colspan="3" <td>r .</td> <td>2020-06-10</td> <td>14,22,25</td> <td>Alarm - Anthonys - Temperatu</td> <td>er flack tilser i nater</td> <td></td> <td></td> <td></td>	r .	2020-06-10	14,22,25	Alarm - Anthonys - Temperatu	er flack tilser i nater			
1 205.00 10.12 Anni-Nos-Ingeneral dense 2 205.00 10.02 Anni-Nose-Ingeneral dense 2 205.00 10.02 Anni-Nose-Ingeneral dense UPUTIONS (PV more) OPUTIONS (PV more) </td <td>1 C</td> <td>2020-09-01</td> <td>10.16.12</td> <td>Asaro - Pre</td> <td></td> <td></td> <td></td> <td></td>	1 C	2020-09-01	10.16.12	Asaro - Pre				
200.00 101.20 assProcImprovementary UPITATION [VTB row] (VTB row] (VTB row]		2020-06-01	1016.22	Alam - Proje - Temperature E	shavel			
	1	2020-06-01	10.16.22	Alare - Prote - Temperature 8	itena			
(ar color co		2020-06-01	10.16.22	Agen - Pope - Tenpergrav 1	-eev			
			Ø (9 🧐	647 - CON 800 - (1) - AU	۲	۲	

Faults and alarms handling:

- » Clearing alarms
- » Alarm logging

≪3 ≣		Annual Annua	
Ö	Last 3		
Bollow Borney consumption: Note shocks energy consumption: Note-score as any consumption: Note-consum 12 energy 15 cm Note-consum 12 energy 15 cm Servery 18 energy 18 cm		power (M)	
ACIEC savings: 98 k9/h		a a a La Ta M anal M	
0 0			
	No alama i No waninga		

Analysis of savings resulting from the operating scenario used:

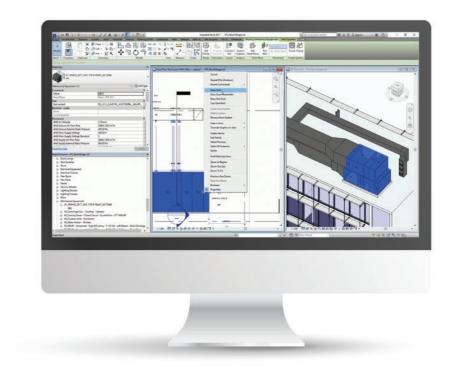
- » Graphical representation of the use of particular energy media
- » Costs and savings shown in any currency.

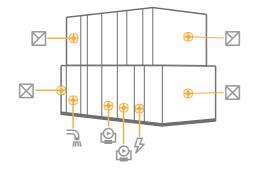
CLIMACAD ONLINE 4.0 (CCOL 4)

CCOL4 IS COMPATIBLE WITH:

» all operating system

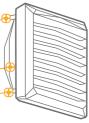
» all devices

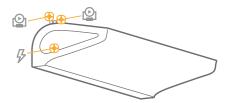



DATA EXPORT TO

VTS BIM - INNOVATIVE APPROACH TO DIGITAL MODELS OF AIR-HANDLING UNITS

VTS has created a possibility of dynamic online generation of digital models of the units VENTUS VVS, VENTUS Compact and American VENTUS AVS. This is possible due to the launch of the new ClimaCAD OnLine 4.0 product selection program that features an .rfa [Revit®] file generator





Generated objects contain detailed parameters connectors: **air systems hydraulic systems sanitary systems**

» electric systems

as well as the complete dimensional data, including unit's maintenance and service (repair) zone.

VTS also provides digital models of WING air curtains and VOLCANO air heaters.

The models contain:

- » parametrized electric and hydraulic connectors,
- » mount options vertically and horizontally,
- » presentation of the range of air stream,
- » parameter of any inclination angle of an air heater in relation to the horizontal plane.

VTS Group S.A.

20, rue de l'Industrie L-8399 Windhof, Luxembourg Phone: +352 20 60 22 41 Email: contact@vtsgroup.lu

www.vtsgroup.com

Due to continuous improvement of the products, VTS reserves right to implement modifications. Some of technical data and descriptions may vary from the actual products specification. Before placing the order, please, confirm all technical specification with VTS sales representative.